
A Security Architecture for
Large-Scale Distributed Computations

Ian Foster* Carl Kesselman+

Gene Tsudik+ Steven Tuecke*

* Argonne National Laboratory

+ USC Information Sciences Institute

Overview

• “Computational grids”

• The grid security problem

• Globus toolkit

• Globus security policy

• Globus security architecture

• Globus security implementation

Computational Grids
“Dependable, consistent,

pervasive access to [high-end]
computational resources”

• Dependable: Can provide
performance and functionality
guarantees

• Consistent: Uniform interfaces
to a wide variety of resources

• Pervasive: Ability to “plug in”
from anywhere

Applications

• Remote visualization & computational
steering

• Remote data analysis

• Online instruments

• Collaborative environments

• Distributed supercomputing

Data

Data Data

Data

Data

A. Physicist

physicist

ssh
ap

guest29

aphysicist

ap6

Kerberos

Kerberos

plaintext

plaintext

plaintext
bcollab

Site A Site B
Site C

Site D

Site ESite F

Site G

Motivating Example

2. Contact resource broker

3. Initiate task farm

4. Access parameter values

1. Request data analysis

Grid Security Characteristics

• Large & dynamic user population

• Large & dynamic resource population

• Computations grow/shrink dynamically

• Multiple communication methods

• Different local security solutions

• Different local credentials

• International users and resources

Requirements

• Single sign-on

• Protection of credentials

• Interoperability with local security solutions

• Exportability

• Uniform credentials/certification infrastructure

• Scalability

• Support for secure group communication

• Support for multiple implementations

Globus Toolkit

Convex SGI SP NT LSF Kerberos

HPC++

Legion MPI
Nimrod

Resource
brokers

Numerical
libraries

CAVERN
soft

Many
Worlds

Chemical
engineering

Cosmology Environmental
hydrology

Molecular
biology

Nanomaterials

Scientific
instrumentation

Condor Web
tools

. . .

. . .

. . .

Security

Communications Information Scheduling Fault
detection

Accounting

Instrumentation QoS Data access

SWIG

Core Globus Services
• Scheduling (Globus Resource Access Manager)

– Low-level scheduler API

• Information (Metacomputing Directory Service)
– Uniform access to structure/state information

• Communications (Nexus)
– Multimethod communication + QoS management

• Security (Globus Security Infrastructure)
– Single sign-on, key management

• Health and status (Heartbeat monitor)

• I/O (Global Access to Secondary Storage)

• Code (Globus Executable Management)

High-Level Services Include ...
• Communication libraries

– MPICH, PAWS, etc.

• Parallel languages
– CC++, HPC++

• Data access
– RIO: remote I/O from MPI-IO

• Collaborative environments
– ManyWorlds, CAVERNsoft

• Resource brokers
– DUROC, Nimrod: high-performance, high-thruput

GUSTO Grid Testbed

Approach: Policy

• Focus on security for interdomain operations
– Assume that intradomain security is handled by

existing mechanisms, which remain in place

• Allow for a program to act as a Globus user
– Necessary for single sign-on when programs

acquire resources dynamically

• Mutual authentication for interdomain
operations
– Site must accept validity of authentication

Policy Contd.

• Distinct global subject space and local subject
space; former can be mapped to the latter
– Mapping can be many-to-one, one-to-one, etc.

• Domain responsible for access control, etc.,
given local subject
– Hence reuse of local mechanisms

• Processes running on the same resource for
the same user can share credentials
– Contributes to scalability

Resource Proxy

Site 1

Local policy
and mechanisms

Site 2

User

Resource Proxy

Global-to-local
mapping table

Local policy
and mechanisms

Host computer

C
RP C

RP

Protocol 1:
Creation of a
User Proxy

User Proxy

CUP

C
U

Global-to-local
mapping table

Long-lived
credential

Temporary
credential

Protocol 4 :
Creation of a global-

to-local mapping

Protocol 3:
Resource allocation

from a process

Protocol 2:
Allocation of a
remote resource

Process

Process

CP

CP

Architecture Overview

Process

Process

CP

CP

Architectural Components

• User proxy
– Act as user for fixed time period

• Resource proxy
– Translate between global and local security solns

• Mapping table
– Translate global to resource subject

Protocols

1: Create user proxy (and temporary credential)

2: Allocate remote resource/create process(es)
– Mutual authentication, translation, access control

3: Resource allocation from user process
– Pass request from process to user proxy

4: Establish entry in mapping table
– Establish possession of global & local credentials

Protocols are mechanism independent and do
not use encryption

1. User Proxy Creation

• User logs on to local host computer

• Produce user proxy credential:
CUP = CU(user-id, host, start-time, end-time, ...)

• Create user proxy with CUP

2. Resource Allocation

• User proxy locates appropriate resource proxy

• UP and RP authenticate using CUP and CRP

• UP presents RP with a signed request

• RP checks to see if the user who signed the
UP’s credentials is authorized by local policy
to make the allocation request.

2b. Establish Process Credential

• RP creates tuple describing user, resource, etc.

• RP signs tuple and sends securely to the UP

• If UP wishes to approve the request, it signs
the tuple to produce process credential CP

• UP returns CP securely to RP

• RP allocates resources, create process(es),
passes CP

3. Request from User Process

• Process and UP authenticate

• Process issues a request to UP
CP (“allocate”, allocation request parameters)

• UP executes request using Protocol 2

• The result is signed by the user proxy and
returned to the requesting process.

4. Establish Mapping Table Entry

• Basic idea is that user authenticates
themselves both globally and locally, using
global and local credentials; and then asserts
that a mapping table entry should exist.

Implementation

• GSS-API provides mechanism-independence
in inter-domain operations
– Plaintext and public key implemented

– Kerberos also possible

• PK based on SSL Authentication Protocols

• Multiple resource proxies implemented
– “Globus Resource Allocation Manager”

– Plaintext (rsh) + Kerberos implemented to date

• Deployed on heterogeneous testbed (20 sites)

Use of GSS-API

Protocol 2Protocol 1 Protocol 3 Protocol 4

GSS-API

plaintext SSL Kerberos . . .

Evaluation

üSingle sign-on

üProtection of credentials

üInteroperability with local security solutions

üExportability

üUniform credentials/certification infrastructure

• Scalability

• Support for secure group communication

üSupport for multiple implementations

Scalability

• In number of processes created
– Yes (?)

• In number of users and resources
– Outstanding issue

• Group communication
– Future work (e.g., CLIQUES)

Future Work

• Current architecture provides a solid basis for
future work in several areas
– More flexible policy-based access control

– Inter-domain access control policies

– Group communication

– Scalability in number of users and resources

– Flexible application of integrity and privacy
mechanisms

Summary

• Distributed computing introduces unique
security concerns

• Globus security architecture incorporates
solutions to several key problems

• An implementation is operational at multiple
sites and in use by applications

• A solid framework for further research and
development

